Monthly Archives: July 2014

Sun setting on the Celtic Sea and B-C Transect 4

By James Scourse

A wonderful place.......

A wonderful place…….

The first of the BRITICE-CHRONO marine transects (transect 4, Celtic Sea) was completed late on Saturday evening. It has been hugely successful – the result of unbelievably excellent weather and sea state, detailed planning and effective delivery by a great team. This has been a controversial and enigmatic part of the British-Irish Ice Sheet for decades with generations of Quaternary geologists attempting to reconstruct glacial events from meagre and sporadic sequences. It was the focus of my PhD back in the early 80’s. A lot of this was spent onshore on the Scillies where the evidence suggested that the Late Devensian maximum advance straddled the northern islands – a conclusion that caused me not inconsiderable grief at the time because large and influential parts of the UK Quaternary community could not accept that the last ice sheet reached this far south. Subsequent work with colleagues using new techniques has supported this original interpretation. I also analysed a series of 12 or so BGS vibrocore samples recovered in the 70’s from the central and southwestern Celtic Sea containing “glacigenic” facies. A northern suite resembling the Scilly Till I interpreted as basal till facies, whereas a southern group – containing spectacular microfossil assemblages – appeared to be glacimarine. On the basis of this available evidence I suggested a mid-shelf grounding line and marine terminus to the Irish Sea Ice Stream. I was unable to explain the origin of some apparently “basal” type diamictons very close to the shelf break; they might possibly be iceberg turbates. More recently I suggested – with additional information from palaeotidal simulations – that the huge Celtic Sea linear ridge bedforms are tidal features reworking the sediments of the terminal ice stream and the Channel River.

Then, starting in the late 2000’s, I became aware that Daniel Praeg from Italy and Steve McCarron from Ireland had become interested in these ridges and were suggesting in conference presentations (e.g. INQUA 2011) that the ridges might actually be subglacial “ giant eskerine” bedforms which, if it were true, would mean that the ice sheet reached right to the shelf break. In Daniel’s model the shelf break diamictons are just that – evidence for shelf edge glaciation. One of the original BGS cores – site 44 – recovered till from the flank of a sand ridge which might suggest that the ridges at least partly pre-dated the glacial event; Daniel, following Pantin & Evans (1984) suggested that the ridges have a carapace of glacigenic sediment and were therefore overridden by ice. But, alternatively, do the glacigenic sediments dive through and under the ridges? A major unanswered question was/is the stratigraphic relationship of the glacigenic sediments to the ridges. There was something faintly ironic in all this: I’d had a lot of grief having argued for an advanced southerly position for the ice sheet, and now here was another team arguing for an even more spectacularly extended southerly limit.

Daniel, with great persistence and motivation, has organised a series of geophysical and coring campaigns with Italian, Irish and BGS colleagues – the last in February-March this year – to attempt to resolve the two models. Spectacularly their last cruise recovered overconsolidated diamicton and normally consolidated glacimarine sediments close to the shelf edge at the southern end of Cockburn Bank (for further details). I won’t steal their thunder because their work is being prepared for publication, but it is fascinating and has injected energy into our researches in this area. Daniel and Steve and colleagues Dayton Dove and my former research student Gill Scott, are now working alongside BRITICE-CHRONO colleagues to help address these questions. Having Daniel as a participant on this James Cook cruise has been a delight and the two hypotheses have been constructively batted to and fro, day and night, with lots of jocular repartee on the nature of things emerging on the sub-bottom profiler; “that’s clearly a buried drumlin”, “no, it’s a proto tidal sand ridge” etc etc.! Were that all scientific controversies were discussed in such a friendly, stimulating and constructive way.

This slideshow requires JavaScript.

So, what have we found? Searching for glacigenic sediments in this area is like looking for a needle in a haystick, so aggressive was the subsequent transgressive episode. Much of the sedimentary evidence has simply been eroded (incorporated into sand ridges??!) or buried. The BGS only found glacigenic sediments in 12 cores of the hundreds that were taken. Well, about a third of all our coring deployments recovered glacial or glacimarine sediments, from sites extending from the shelf edge to the Celtic Deep, a total of 14 vibrocores and 5 piston cores. This success is a testament to painstaking preparation – including a reconnaissance geophysical cruise – led by Katrien Van Landeghem, Sara Benetti, Lou Callard and colleagues – so that our targets were well defined. Excellent onboard sub-bottom data has also been crucial, pored over night and day by Daniel, Katrien, Colm, Richard and myself, and the expertise of the BGS and NOC coring teams. There is no doubt that these samples and their contextual geophysical data will transform our understanding of the LGM in the Celtic Sea, a topic that continues to fascinate, bemuse and, occasionally, infuriate. One of our key targets, site 44, stubbornly refused to yield anything but sand – dubbed the “sands of woe” by Lou Callard – that left Daniel, head in hands, muttering “Oh bloody, bloody, hell”!

What about the two hypotheses…well, I already have some modified interpretations emerging – new working hypotheses if you like – but I’m not going to be pushed on these until we have the data analysed from the cores. Having said that, I think Daniel might be partly right and partly wrong, and that I, too, might have been partly right and partly wrong. Such is science!

Cruise 1: a perspective from the stern…..

By Jenny Gales and other more reluctant bloggers….

The corer has landed

The corer has landed


The BGS team (Davie, Keith, Mike, Alan, Joe and Jenny) have been busy collecting sediment cores using the BGS remotely operated vibrocorer, with 39 successful cores recovered so far, 14 of which were in the last 24 hours.

The BGS vibrocorer weighs in at 5000kg, in the super-heavyweight class, and can be deployed to a water depth of 2000m. The system consists of a 6 m hollow tube of steel, called a barrel, which is driven into the seafloor by a 1 tonne vibrating pot at the top of the barrel. The whole thing is held in a vertical upright position by a three legged metal frame that keeps it from tipping over on the seabed we hope… Our team, all six of us operate a round-the-clock 24 hour operation, in two shifts of three people, (day-watch Davie, Keith and Alan) and (night-watch Mike, Jenny and Joe) given we occasionally need sleep and time off to read and drink tea.

This slideshow requires JavaScript.

Each deployment of the beast starts with the vibrocorer lying horizontal on the back deck of the ship. First, a hard plastic core liner is put into the barrel. Next, a metal core catcher is added to the end of the plastic liner, to stop sediment falling back out when the core is raised back onto the ship. Finally, a core cutter is attached to the end of the barrel, which cuts through the seafloor. The vibrocorer is then raised up into a vertical position by a BGS winch system and the ship’s A-frame. It’s then lowered over the back deck to the seafloor at about 30 meters per minute. When the vibrocorer lands on the seabed, the corer is started from a purpose built container on the back deck which is fitted with a control and acquisition system. The barrel is driven into the seafloor by the weight filled vibrating pot and collects a core of sediment as it goes down. This usually takes between 15 minutes to 1 hour depending on how hard the sediment is or how persistently nagging the science team are. The materials in the south Celtic Sea have been a little challenging, with coarse sands and other materials proving tough to penetrate. Also the much sought after glacial muds have been tricky to find! Once the coring is finished, the vibrocore is easily (for the most part) extracted from the sea bed and raised back onto the deck of the ship and the now sediment filled barrel is removed. The sediment-filled core liner is taken out of the barrel and is carefully labelled and cut into 1 m sections. The sediment core is now ready to pass on to an expectant science party craving muds……

This slideshow requires JavaScript.

Cruise 1: Our looking glass onto the sea-floor…..

Dr. Fabio Sacchetti from the Marine Institute (INFOMAR program) has joined the BRITICE-Chrono survey cruise as Irish Observer and multibeam/geophysical support. As Irish Observer Fabio is overlooking survey operation when in Irish water and makes sure that the survey does comply with Irish standard practices. From a scientific point of view, Fabio has spent the last 11 years mapping the seabed offshore Ireland and the last 4-5 years studying its glacial geomorphology. Back in Ireland Fabio works for the INFOMAR program as hydrographic team leader and onboard the RSS James Cook looks after the multibeam and geophysical data acquisition and processing during the night shift.

This slideshow requires JavaScript.

So far the collection of good quality multibeam data has been quite challenging for a number of reasons. The ship is equipped with 2 Kongsberg multibeam systems, the EM710 (for shallow to medium water) and the EM120 (for deep water). The data from both systems are routinely collected day and night and they need to be quickly cleaned and tidally corrected in order to be able to create useful bathymetric surfaces. These info are then used for many purposes including geomorphological interpretation, core site selection and ultimately to make sure that the sampling gear are not deployed over risky seabed. At the start of the survey both multibeam systems had to be calibrated in order to provide the best data quality. After few days and with the weather picking up a bit it was also obvious that the motions sensor (which is needed to precisely correct the swath data) wasn’t performing properly. Further modifications to the standard setup had to be done in order to remove motion artefact that were affecting the usability of the data.

3D image of a canyon head used to calibrate the multibeam systems.

3D image of a canyon head used to calibrate the multibeam systems.

Fabio says: so far this has been an exciting scientific cruise simply due to the sheer amount achieved by the scientists and crew aboard the RSS James Cook, especially in light of anticipated challenges posed by the type of glacial sediment required to be cored, which is proving to be incredibly hard to penetrate. Working with some of the best marine glaciologists in Europe is exciting and challenging at the same time. Data are not just collected but analysed and interpreted on the fly and this contributes to a more hectic, clever, and scientific hands on approach, which makes the all survey way more interesting. It is also a pleasure to see how much projects such as INFOMAR can support and help the scientific communities providing top quality multibeam and geophysical data free of charge, which has been fundamental during the planning of this ambitious research project. The RRS James Cook is an exceptionally good platform for survey and sampling operation with top class facilities and lab space. This is an incredible experience and allows me to learn how things are done onboard one of the best research ship in the world.

Fabio: more than just geophys, a dab hand at DIY.....

Fabio: more than just geophys, a dab hand at DIY…..

Cruise 1: meet our Marine Mammal Observer

By Marian McGrath
dolph
Hello everyone! It’s been one week since we joined the RRS James Cook in Southampton, even though we didn’t actually leave the port till Friday the 18th due to technical problems with the vibro corer. My role on board is as the Marine Mammal Observer (MMO). The role of the MMO is to ensure the safety and protection of marine mammals from man-made noise pollution in the ocean. This can damage or kill cetaceans which have very sensitive hearing. The Marine Mammal Observer (MMO) is required by law to be aboard any vessel which is carrying out seismic surveys within Irish waters. On this vessel, Sub Bottom Profiler seismic equipment and Multibeam echosounder equipment are being used. In unprotected marine areas an MMO is required to carry out a 30 minute pre Multibeam echo sounder and Sub Bottom Profiler watch followed by a 20 minute watch during the soft start. Sound activity cannot commence until the MMO gives clearance after the 30 minute watch. If marine mammals are spotted within 500m range of the equipment during this watch then a further 30 minute watch is undertaken till marine mammals have left the mitigation zone. If no marine mammals were seen within this time then a soft start would commence. Once the ramp up procedure is started there is no need to stop the equipment during night time hours. The Multibeam and Pinger systems remain active during the survey unless we are on a coring station for longer than an hour in which case they are switched off. They are also turned off during the mid-cruise port call in Killybegs.

This slideshow requires JavaScript.

Marine mammal observations are carried out from the bridge. This gives the best view point of both sides and in front of the vessel. The equipment is always started during daylight hours to allow for MMO watches to be carried out prior to soft starts. Observations are undertaken using a reticular binoculars, a range finder and also by the naked eye. Distance to marine mammals is determined using this reticular binoculars and height above sea level. To determine the range one of the divisions present in the binoculars is placed on the horizon. A formula is then used to determine the distance of the mammal from the ship. The formula is: Distance (m) = (height of eye above sea level (m) x 1000/ no. of mils down from horizon). Throughout the duration of the survey, watches are undertaken throughout the day and any sightings are logged in a computer supplied by The Irish Whale and Dolphin Group. This will feed into a database which is constantly updated regarding location and numbers of various species. Throughout the day recordings are taken of precipitation, sea state, visibility, ship speed, water depth, cloud cover, latitude and longitude, wind speed and direction. So far on this survey Common Dolphins have been seen near the shelf edge of the Celtic Sea. First 4 adult dolphins were seen on the 21st July and later the same day 11 adults and one calf were seen.

Cruise 1: Days 1-6 trials, tribulations and triumphs

By Rich Chiverrell and co from the edge of the shelf

Developed as a concept 3-4 years ago, and planned over the last 2 years with massive input from across the Britice-Chrono team and Colm Ó Cofaigh (Marine Theme Leader), on Monday 14th July it finally began to happen, Cruise 1 (JC106) of the NERC Consortium Project Britice-Chrono. The vessel, the RRS James Cook was waiting for us moored at the wharfside of the National Oceanography Centre (NOC) in Southampton as the various team members mobilised. For me this would be a first, after running the terrestrial field programme for the past 18 months, and now for something completely different – having visited numerous boulders, quarries and cliff sections, the chance to see and sample the extensive offshore sediment and landform record of the decline/collapse for the former British-Irish Ice Sheet (BIIS).

The leaving of Southampton

The leaving of Southampton

Individual preparations for an undertaking like this began months ago; spending 3-6 weeks living offshore on a state-of-the-art research vessel does not happen overnight. In June marine survey or personal survival training qualifications were needed. This involved 7/8 hours of training and tests at the Fleetwood Nautical Campus, which covered survival equipment, how to abandon ship from a 5m platform and in the appropriate survival gear (immersion suites, life jackets, entering life-rafts, management of life rafts, individual and group mobility in the water). All this in a state-of-the-art 8-9m deep wave simulator, where for the finale we abandoned ship from 5m, in the dark, smoke everywhere, rainfall and spray, into a wave churning pool, after 5-10 mins in the life-raft mal-de-mer was looming! Medical certification testifying fitness to work was also needed. And then on to other tasks, helping with permissions for geophysical survey and coring in Irish, English, Welsh, Manx and Scottish waters all were required; remarkably all interpret EU law differently and this resulted in a major undertaking for Colm Ó Cofaigh amongst many others.

It was with a little trepidation and expectation that I first visited the RRS James Cook on Monday to drop of personal luggage and cameras (on board duties for me included amateur film maker and outreach obsessive). First impressions, a big and well equipped ship, and my cabin is more spacious than I expected. Second impression there was still a great deal to do before our scheduled departure noon Tuesday 15th July, with an impressive set of additional equipment being loaded as I arrived; the British Geological Survey waited on replacement cranes to load the 6m vibro-corer. The NOC 12m length piston corer was also working its way on board. A freight container that housed the University of Leicester Multi-Sensor Core Logger was also being loaded. The science team added research consumables to allow the sampling of ~200 core profiles and then on Tuesday ourselves for familiarisation and preparations to depart. It perhaps was more of a surprise than it should have been when our eventually departure lunchtime on Friday came around, because mobilising this scale of operation is challenging, and we did have a few issues with the vibrocorer that the BGS team worked largely round the clock to fix including extra and replacement equipment from Edinburgh. The wider BGS team got to know the route from Southampton – Edinburgh well…..

After some final repairs and tests of the vibrocorer and we met our Friday departure time, and headed for a date with the English Channel and a test location identified to the south of the Isle of Wight. Casting off and the journey to the Solent was in calm seas and glorious sunshine, within 3-4 hours we reached the test area, and the BGS and JC106 Science teams readied themselves for the fray. Using the RRS James Cook’s dynamic positioning system the crew manoeuvred the ship into position in 30-40m of water. The BGS team, thoroughly checking the physical operation of the equipment, lowered, sampled and recovered a vibrocore. The equipment was functioning fine, we were ready for the Celtic Sea and the Science team had materials on which to practice our procedures e.g. core cutting, splitting and description.

This slideshow requires JavaScript.

On finishing the test core location, the geophysical equipment was powered up, so that the watch teams could gain experience and practice the 24 hr geophysics monitoring duties. My first watch was 12 midnight through to 4am! Actually pretty good fun, not sure how quickly my body clock will adjust to a warmed up dinner for breakfast, breakfast for lunch and lunch for dinner, and for that matter sleeping 4pm til 11pm……

Saturday through to Sunday was spent in transit; the shelf edge of the Celtic Sea is quite a long way ~ 36 hours at ~10 knots. In the mid-morning our safety skills were put through the paces, with a muster drill, the alarms sound we secure warm clothing and life jackets and convene in the muster point, from which we are led to and board the two life boats. Very spacious, well kind of, the each can take ~50 people and we are a crew of around 50. You can imagine they would get very warm and pretty unpleasant if full of people for a long time.

On waking 11pm after not much sleep, still adjusting to the new life cycle… Taking over from the end of my day watch partner, Catriona, my watch was good fun acquiring the data for the next 5-6 hours involving scouting for core sites as we began our target geophysics transect on the shelf edge, with some success finding some promising targets in between problems with the Sub-Bottom Profiler. Riccardo and then Kasper followed, with ever present input from night coring lead Sara, night geophysics lead Fabio and Margot. On this watch we completed an acoustic velocity profile as a calibration for the multibeam survey systems, and worked the geophysics transect. Once complete we arrived at the destination for our shelf edge piston core. The piston coring team from NOC made quick work of the 459 meter, recovering ~ 4m (JC106-002PC). Fabio and the RRS James Cook computation team carried out a further calibration of the multibeam survey using the sea floor topography. The core awaits acclimatising to the MSCL container and whole core analysis of the physical properties with Elke.

This slideshow requires JavaScript.


At noon, the baton passed to day watch (Katrien, Lou, James, Catriona, Daniel, Zoe) and the challenges of obtaining five vibrocores along the geophysics transect in search of that Holy Grail, a contact between subglacial diamicts and glaciomarine deposits in 280m of water. JC106-003VC, the first stop, was on the flank of the western side of Little Sole Bank near an earlier BGS vibrocore. The materials were very tough penetrating ~1.6m, with a much consolidated stony diamict at the base; admittedly a little/lot early to say it looks a lot like what we were hoping for, and there are four more sites to follow, but….

This slideshow requires JavaScript.